Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds
نویسندگان
چکیده
Buoyancy is a major determinant of locomotory cost in diving animals. As seabirds have a large amount of air in their feathers and respiratory system, they should work hard against buoyancy to descend in the water column. Since buoyancy decreases with increasing hydrostatic pressure, shallow divers, especially, should work against buoyancy during both the descent and bottom phases of their dives. We deployed miniaturised depth and acceleration recorders on freeranging, foot-propelled divers (great cormorants Phalacrocorax carbo) and flipper-propelled divers (little penguins Eudyptula minor) foraging in shallow waters, where both are positively buoyant. We monitored the diving strategies of the birds to assess how they manage to counteract buoyancy using 2 alternative locomotory modes. Cormorants decreased the stroke frequency and surge amplitude during descent and maintained constant swim speed. In contrast, penguins did not change their stroke frequency or heave amplitude; as a result, their swim speed increased during the descent phase. During the bottom phase, cormorants had a low stroke frequency and tilted towards the bottom, while penguins actively stroked in a horizontal position. Furthermore, intensive acceleration periods during the bottom phase were often recorded for penguins, but rarely for cormorants. Great cormorants and little penguins used different strategies to feed underwater. Great cormorants, having lower specific buoyancy, were less active than little penguins, thus adopting an energysaving strategy. We conclude that both footand wing-propelled birds diving in shallow waters have developed efficient locomotory strategies to counteract buoyancy, these alternative characteristics being linked to different foraging niches.
منابع مشابه
The effects of depth, temperature and food ingestion on the foraging energetics of a diving endotherm, the double-crested cormorant (Phalacrocorax auritus).
Avian divers are confronted with a number of physiological challenges when foraging in cold water, especially at depth. Besides the obvious constraint imposed by the necessity to return to the surface for gas exchange, cold water temperatures and a reduction in body insulation due to the increase in pressure with dive depth will elevate the energetic costs of foraging in these endotherm divers....
متن کاملStroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans
It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg s...
متن کاملLift-based paddling in diving grebe.
To examine the hydrodynamic propulsion mechanism of a diving great crested grebe (Podiceps cristatus), the three-dimensional kinematics was determined by digital analysis of sequential video images of dorsal and lateral views. During the acceleration phase of this foot-propelled bird, the feet move through an arc in a plane nearly normal to the bird's line of motion through the water, i.e. the ...
متن کاملAnatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic puffin, Fratercula arctica.
Twenty-three species within the avian family Alcidae are capable of wing-propelled flight in the air and underwater. Alcids have been viewed as Northern Hemisphere parallels to penguins, and have often been studied to see if their underwater flight comes at a cost, compromising their aerial flying ability. We examined the anatomy and histochemistry of select wing muscles (Mm. pectoralis, suprac...
متن کاملRegulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic.
Swim speed during diving has important energetic consequences. Not only do costs increase as drag rises non-linearly with increasing speed, but speed also affects travel time to foraging patches and therefore time and energy budgets over the entire dive cycle. However, diving behaviour has rarely been considered in relation to current velocity. Strong tidal currents around the Belcher Islands, ...
متن کامل